479 research outputs found

    Integral representations of q-analogues of the Hurwitz zeta function

    Full text link
    Two integral representations of q-analogues of the Hurwitz zeta function are established. Each integral representation allows us to obtain an analytic continuation including also a full description of poles and special values at non-positive integers of the q-analogue of the Hurwitz zeta function, and to study the classical limit of this q-analogue. All the discussion developed here is entirely different from the previous work in [4]Comment: 14 page

    Evolving solitons in bubbly flows

    Get PDF
    At the end of the sixties, it was shown that pressure waves in a bubbly liquid obey the KdV equation, the nonlinear term coming from convective acceleration and the dispersive term from volume oscillations of the bubbles.\ud For a variableu, proportional to –p, wherep denotes pressure, the appropriate KdV equation can be casted in the formu t –6uu x +u xxx =0. The theory of this equation predicts that, under certain conditions, solitons evolve from an initial profileu(x,0). In particular, it can be shown that the numberN of those solitons can be found from solving the eigenvalue problem xx–u(x,0)=0, with(0)=1 and(0)=0.N is found from counting the zeros of the solution of this equation betweenx=0 andx=Q, say,Q being determined by the shape ofu(x,0). We took as an initial pressure profile a Shockwave, followed by an expansion wave. This can be realised in the laboratory and the problem, formulated above, can be solved exactly.\ud In this contribution the solution is outlined and it is shown from the experimental results that from the said initial disturbance, indeed solitons evolve in the predicated quantity.\u

    The gradient of potential vorticity, quaternions and an orthonormal frame for fluid particles

    Full text link
    The gradient of potential vorticity (PV) is an important quantity because of the way PV (denoted as qq) tends to accumulate locally in the oceans and atmospheres. Recent analysis by the authors has shown that the vector quantity \bdB = \bnabla q\times \bnabla\theta for the three-dimensional incompressible rotating Euler equations evolves according to the same stretching equation as for \bom the vorticity and \bB, the magnetic field in magnetohydrodynamics (MHD). The \bdB-vector therefore acts like the vorticity \bom in Euler's equations and the \bB-field in MHD. For example, it allows various analogies, such as stretching dynamics, helicity, superhelicity and cross helicity. In addition, using quaternionic analysis, the dynamics of the \bdB-vector naturally allow the construction of an orthonormal frame attached to fluid particles\,; this is designated as a quaternion frame. The alignment dynamics of this frame are particularly relevant to the three-axis rotations that particles undergo as they traverse regions of a flow when the PV gradient \bnabla q is large.Comment: Dedicated to Raymond Hide on the occasion of his 80th birthda

    Ewald method for polytropic potentials in arbitrary dimensionality

    Full text link
    The Ewald summation technique is generalised to power-law 1/|r|^k potentials in three-, two- and one-dimensional geometries with explicit formulae for all the components of the sums. The cases of short-range, long-range and "marginal" interactions are treated separately. The jellium model, as a particular case of a charge-neutral system, is discussed and the explicit forms of the Ewald sums for such system are presented. A generalised form of the Ewald sums for a noncubic (nonsquare) simulation cell for three- (two-) dimensional geometry is obtained and its possible field of application is discussed. A procedure for the optimisation of the involved parameters in actual simulations is developed and an example of its application is presented.Comment: 41 pages, 3 figure

    Weyl Equation and (Non)-Commutative SU(n+1) BPS Monopoles

    Full text link
    We apply the ADHMN construction to obtain the SU(n+1)(for generic values of n) spherically symmetric BPS monopoles with minimal symmetry breaking. In particular, the problem simplifies by solving the Weyl equation, leading to a set of coupled equations, whose solutions are expressed in terms of the Whittaker functions. Next, this construction is generalized for non-commutative SU(n+1) BPS monopoles, where the corresponding solutions are given in terms of the Heun B functions.Comment: 16 pages, Latex. Few typos corrected, version to appear in JHE

    A Snapshot of J. L. Synge

    Full text link
    A brief description is given of the life and influence on relativity theory of Professor J. L. Synge accompanied by some technical examples to illustrate his style of work

    Analytical method for perturbed frozen orbit around an Asteroid in highly inhomogeneous gravitational fields : A first approach

    Get PDF
    This article provides a method for nding initial conditions for perturbed frozen orbits around inhomogeneous fast rotating asteroids. These orbits can be used as reference trajectories in missions that require close inspection of any rigid body. The generalized perturbative procedure followed exploits the analytical methods of relegation of the argument of node and Delaunay normalisation to arbitrary order. These analytical methods are extremely powerful but highly computational. The gravitational potential of the heterogeneous body is rstly stated, in polar-nodal coordinates, which takes into account the coecients of the spherical harmonics up to an arbitrary order. Through the relegation of the argument of node and the Delaunay normalization, a series of canonical transformations of coordinates is found, which reduces the Hamiltonian describing the system to a integrable, two degrees of freedom Hamiltonian plus a truncated reminder of higher order. Setting eccentricity, argument of pericenter and inclination of the orbit of the truncated system to be constant, initial conditions are found, which evolve into frozen orbits for the truncated system. Using the same initial conditions yields perturbed frozen orbits for the full system, whose perturbation decreases with the consideration of arbitrary homologic equations in the relegation and normalization procedures. Such procedure can be automated for the first homologic equation up to the consideration of any arbitrary number of spherical harmonics coefficients. The project has been developed in collaboration with the European Space Agency (ESA)

    Two dimensional smoothing via an optimised Whittaker smoother

    Get PDF
    Background In many applications where moderate to large datasets are used, plotting relationships between pairs of variables can be problematic. A large number of observations will produce a scatter-plot which is difficult to investigate due to a high concentration of points on a simple graph. In this article we review the Whittaker smoother for enhancing scatter-plots and smoothing data in two dimensions. To optimise the behaviour of the smoother an algorithm is introduced, which is easy to programme and computationally efficient. Results The methods are illustrated using a simple dataset and simulations in two dimensions. Additionally, a noisy mammography is analysed. When smoothing scatterplots the Whittaker smoother is a valuable tool that produces enhanced images that are not distorted by the large number of points. The methods is also useful for sharpening patterns or removing noise in distorted images. Conclusion The Whittaker smoother can be a valuable tool in producing better visualisations of big data or filter distorted images. The suggested optimisation method is easy to programme and can be applied with low computational cost

    N=4 Superconformal Algebra and the Entropy of HyperKahler Manifolds

    Full text link
    We study the elliptic genera of hyperKahler manifolds using the representation theory of N=4 superconformal algebra. We consider the decomposition of the elliptic genera in terms of N=4 irreducible characters, and derive the rate of increase of the multiplicities of half-BPS representations making use of Rademacher expansion. Exponential increase of the multiplicity suggests that we can associate the notion of an entropy to the geometry of hyperKahler manifolds. In the case of symmetric products of K3 surfaces our entropy agrees with the black hole entropy of D5-D1 system.Comment: 25 pages, 1 figur
    corecore